Skip to main content


Agri-tech in Action: Why ecometric is backing soil health

By Tech in Action

When your passions are flying and farming, opportunities to combine your interests are, it’s fair to say, limited. Yet, David Wright has managed it. He has transitioned from Red Arrow Pilot, through Agri-tech CEO, and on to Climate-tech CEO. In 2021, David founded ecometric – a company combining physical and spectral sampling to reveal annual carbon changes in agricultural soil. Today, ecometric provides accurate data and evidence-based decision making support to farmers looking to explore regenerative agriculture while opening opportunities for carbon trading.

Can you introduce yourself and explain why you decided to found ecometric?

The idea for ecometric stemmed, not from trading carbon, but as a means to draw focus of agriculture towards soil health. My previous Agri-tech company mapped crop canopy development from the air, which highlighted how yield was often dictated by limiting factors in the soil that couldn’t necessarily be corrected with chemical inputs. ecometric was set up to identify and monitor these key soil performance indicators to support improved management decisions. Soil organic carbon (SOC) was identified as one of the key indicators of system productivity and health, so we set about building a methodology to accurately monitor the SOC change associated with every production cycle.

The first stage was to design a soil sampling system that could account for a high degree of field-level SOC variability and to begin gathering data. The second stage was to introduce emerging AI technology that could relate spectral samples from multispectral satellite imagery to soil samples. This would increase the accuracy of quantifying SOC stock change. The third stage was to work with the farm management team to relate SOC change to specific, causal management decisions.

Rather than take a combative, disruptive approach, ecometric seeks to complement existing farming practices. We work for the farmer; we don’t work for the carbon market. Indeed, we sit completely outside of the transaction and make no money from the trading of carbon. This avoids conflict of interest and makes ecometric an extremely trustworthy farm management support tool.

Could you say more on the problem you seek to solve?

A problem with conventional farming is the risk of SOC loss through oxidation, mineralisation, leaching and erosion. Such depletion of SOC stocks has many consequences, including making farmers increasingly reliant on artificial fertiliser to maintain yields. As the single biggest source of greenhouse gas emissions from the arable farming production system, the rising use of nitrogen fertiliser is exacerbating global warming.

A system change is needed to reverse this SOC decline. In moving towards regenerative practices, farmers can minimise soil disturbance, maximise the size and duration of crop roots and canopies and, where possible, reintroduce livestock or their manure into the rotation. The resulting increases in SOC levels are a reliable indicator of soil health, productivity and resilience against climatic extremes and, as we are beginning to evidence, increased farm business profitability.

ecometric is committed to creating a compelling, evidence-based case for regenerative agriculture. The concept of soil sampling is not new, it has been used for decades to assess the availability of nutrients and calculate fertiliser requirements!  But at ecometric, we measure for the opposite reason. Our aim is to provide clear evidence that regenerative agriculture can sequester carbon from the atmosphere in contrast to the carbon emissions released from conventional systems. In doing so, we can directly relate increased organic carbon stocks to nitrogen requirement, yield, greenhouse gas emissions and business gross margin.

Let’s get technical: How does your product work?

There are three key components: the soil sample, the spectral sample and the Artificial Intelligence (AI). First, to directly measure soil organic carbon, we use the Dumas method. This measures and reports SOC and total nitrogen to a greater accuracy than alternative test types such as Loss on Ignition. As well as physical soil samples, we also source coincident spectral samples from multispectral satellite imagery.

Together, these measurements give us two, seemingly unrelated, sample types. To establish a relationship between the two datasets, we need a powerful computing system. This is where the AI comes in. We use an Artificial Neural Network (ANN) which is a technology constructed to work like a human brain. It learns iteratively from each dataset you give it, growingly progressively better with time and repetition.

The ecometric ANN is trained to relate the georeferenced soil sample results gathered at high density across the project area to the coincident spectral samples values. Once the system has established the site-specific relationship between the spectral and soil samples, it can accurately estimate SOC stocks from the multispectral imagery alone, reporting a discrete value for every 10-metre squared pixel. As the final test stage of this cycle, ANN results are directly compared back to the original soil sample results to calculate and report the average accuracy. With this method, ecometric has achieved repeatable accuracies of >95% over tens of thousands of hectares.

However, the process does not end when the ANN’s accuracy exceeds 90 percent. In line with the agricultural cycle, we take new samples every 12 months. And every 12 months, we retrain our models. As well as consistently improving the ANN, this means we have up-to-date physical results against which to check ANN accuracy. This tethers ANN estimations to on-the-ground realities and prevents the error rate increasing over time which is a common limitation of untethered models. Accuracy levels are ‘measurable’, and all sources of laboratory and AI error are treated as potential sources of over-estimation and deducted from the SOC stock totals.

Central to our methodology is the commitment to only trade climate positive, soil carbon gains. This means we deduct all the greenhouse gas emissions released during the farm’s production cycle and a landowner can only trade if there remains a surplus. This carbon balance report proves that the farm has added more carbon to the soil than has been emitted while growing food and fibre. The carbon revenue becomes a major incentive for farmers to adopt and improve regenerative methods that sequester enough carbon to generate a tradable surplus.

Can you share a story of success?

Within regenerative systems, we are evidencing an average annual SOC increase across the whole rotation and have correlated these findings to higher yields per hectare with lower quantities of nitrogen fertiliser. As an example, our highest performing project in 2022 yielded 11 tonnes of wheat using only 140 kg of nitrogen. To put that in perspective, the UK average for a crop that big, is 220 kg of nitrogen per hectare. This same farm also had the lowest greenhouse gas emissions of all benchmarked projects.

But it’s not just the nitrogen. When farmers exit the cycle of depletion, they unlock numerous additional benefits:

  1. Soil organic carbon holds water.
    Every 0.5 percent increment in soil organic carbon stocks can hold another 150,000 litres of water per hectare. Therefore, by increasing the organic carbon content of soil, farmers are straight-away improving the resilience of that soil to droughts and dry spells.
  2. There is a relatively fixed relationship between carbon and nitrogen in the soil.
    As you increase the carbon, you also increase the naturally available nitrogen. This brings both environmental and economic benefits as yields can be consistently maintained while reducing quantities of applied nitrogen fertiliser.
  3. More accurate reporting.
    Many farmers use online carbon footprint calculators to estimate the emissions from their production systems. However, ecometric can provide more accurate insights by replacing the assumed sequestration values with a real-life measurement of soil carbon stock change. This is useful for supply chain reporting as supermarkets increasingly ask for environmental credentials to be displayed on a product’s packaging and accuracy is vital to optimising farm management decisions.

Finally, what’s next for ecometric?

To make the biggest, most positive climate impact, we need to operate over the largest possible area. Already working in ten countries (and with data share projects ongoing in another two) our priority is to scale internationally.

We are also digging deeper into our metrics to look beyond soil carbon and into other indicators of soil health. Soon, we will be looking at the bacterial and fungal loading of soil biomes with the aim of relating the soil carbon content with the biodiversity of the soil. From here, our ultimate aim is to relate these metrics to the nutritional value of the food coming out of the system. We have heard and seen much anecdotal and empirical evidence that food grown in regenerative systems is better for human consumption. So our next step is to prove this with data.

However, the central value of ecometric will always remain. We have balanced very carefully the need for accuracy from a carbon buyer perspective with affordability from a carbon seller perspective. At our core, we give land custodians the tools to measure improvements in soil health as a result of their changing land management practices. We don’t just give findings and walk away, ecometric is always part of the data interpretation and evidence-based action to support system change.


Disclaimer: ecometric works with one of Respira International’s flagship portfolio projects, Blaston Farm. Read more about ecometric here and about Blaston Farm here.

Biomass in action: Why CEO Marco Albani founded Chloris Geospatial

By Tech in Action

In the first of our Tech in Action  series, we speak to Marco Albani, the Co-Founder and CEO of Chloris Geospatial. Established in 2021, the company is operating at the intersection of space-tech and nature-tech. Using advanced machine learning, artificial intelligence and sensor-fusion, the team at Chloris Geospatial can directly measure vegetation dynamics on earth, from space.

Can you introduce yourself and explain why you decided to found Chloris Geospatial?

Although I trained as a forest scientist, I spent much of the last 20 years working in sustainability and on climate change solutions for business. Time and again, I saw action hindered by a shortage of good operational-scale data and by a lack of understanding of how changes in land use impact the volumes of carbon stored in the earth’s vegetation. Businesses needed greater awareness of the impacts of their activities on the natural world. So, not only did I know there was space, but also a pressing need for a solution. 

I knew that Dr. Alessandro Baccini, Chief Scientist and co-founder of Chloris Geospatial, had been working on the science side of this issue for over 20 years. He was using remote sensing data to directly estimate the carbon stored in vegetation and forest. While we each came to the challenge from a different angle, we both recognised the importance of making this science available to the market – both at scale and at the speed of business. 

With a growing number of companies starting to take responsibility for their impact on climate and nature, we knew we needed to make our Chloris accounting system easy-to-access and reliable. In this way, we could help new players understand and visualise the carbon stored in forests and vegetation. This was the belief on which we founded Chloris Geospatial.

Could you say more on the problem you seek to solve?

Fundamentally, healthy economies are underpinned by natural capital, such as our forests and grasslands. So, for the global economy to strengthen and achieve a state of net-zero carbon by 2050, we must comprehensively conserve and restore these ecosystems.

At Chloris Geospatial, our mission is to accelerate the transition to a net-zero and nature-positive future. The way we do it is by making it easier for businesses to understand their impact on nature. We are aware that all businesses and corporations are facing the challenge of transitioning to a net-zero and nature-positive economy, which is why we are determined to make access to carbon data, and its insights, both fast and easy. 

At present, our primary focus is on companies operating in the voluntary carbon market and supply chain companies in the food, land use and agriculture sector. Here, the Chloris technology is enabling a real paradigm shift for the measurement of forest carbon. It brings unprecedented integrity, speed and scalability to the voluntary carbon market and to the measurement of the climate performance of forest carbon projects. In just a few hours, we can generate biomass predictions for anywhere in the world.

Our logic at Chloris Geospatial is that if business leaders can access high integrity accounting on natural capital, they need no longer question the carbon calculations on which their investments are based. Equipped with reliable, trust-worthy data, they are free to focus on taking effective action for climate and nature by accelerating investments in nature-based solutions while, at the same time, being able to cost effectively monitor impact with confidence. 

Let’s get technical: How does your product work?

Today, we are the leading company in the market to deliver what is referred to as direct measurement of above-ground carbon stock and change from space. The data we deliver is empirical, spatially explicit, wall-to-wall and comes with quantified uncertainty at the pixel-level. This means, we do not use the average emission factors and area-based estimates that standard remote-sensing approaches are reliant upon. 

Unlike those standard approaches – and thanks to our scientific, machine-learning and software innovations – we see all above-ground carbon changes over very large areas. We can spot carbon emissions from large-scale deforestation, degradation, disturbances and fires. More encouragingly, we also observe the carbon removals as a result of reforestation or restoration. That is why we say that ‘we see what the atmosphere sees’. 

When you unpick this statement, it means that we measure (and annually update) the volume of carbon in and carbon out, for every pixel on the planet, since the year 2000. This is what really matters for the credible carbon accounting that a credible transition to net-zero requires.

As I mentioned, the Chloris Platform is built on the work and experience of Dr. Alessandro Baccini. As a pioneer in measuring forest carbon stock and change from space, he has been instrumental in building our technology. Our data products are based on the fusion of datasets from public Earth Observation missions, including data from NASA’s ICESat GLAS and GEDI instruments, from the European Space Agency’s Sentinel-1 and Sentinel-2 satellites, and from the United States Geological Survey’s Landsat satellites. 

To provide global coverage that incorporates geographic variation in vegetation types and structure, our models are trained at continental scale and capture geographic variations in allometry (the relationship between size and characteristics). Our models also capture the relationships between above ground biomass and remote sensing measurements. Once collected, our data is processed and delivered via the Chloris Platform, which is our cloud-native software infrastructure that deploys data at the speed of business, in a scalable and cost-effective manner. To ensure these high standards are maintained, we make both automated and manual assessments using proprietary benchmarks and publicly available data products.

As a result of the machine-learning and advances in artificial intelligence made by our science and engineering teams, our Platform provides accurate data and insights quickly and at large scale. Our machine learning models are anchored in state-of-the-art data science. They filter and pre-process input data for both quality and representativeness, and create novel predictive features that underpin our mapping algorithms. 

Arguably there is nothing new to use satellites to observe and measure forests, but the current standard approaches have serious limitations. We are pleased to overcome these at Chloris Geospatial and to bring to the market a solution that is able to visualise changes in biomass not only from degradation and deforestation, but also by the slow, steady re-growth of trees.

Can you share a story of success?

From very early on in our start-up journey, Permian Global was a dedicated adopter of our technology, trusting our data for their project development and MRV work in Indonesia. Gaining the trust of such a leading project developer was very encouraging. 

More recently, we have expanded our customer base for large scale work in the voluntary carbon market and in the food, land use and agriculture sectors. The opportunity to demonstrate our technology at these very large scales has been extremely positive for us.

On the product and science side, we are delighted to have achieved a big milestone this year. Since June 2023, we have been able to deliver spatially explicit, annual above-ground biomass stock and change data at 30 m resolution going back to the year 2000. Not only is this data extremely comprehensive, but also has full temporal and spatial consistency and scalability. This longer time series means we can gather more robust data on degradation and growth trends of above-ground biomass. As a result, we have significantly improved our ability to meet the needs of project developers and other actors who are screening and assessing high quality opportunities for avoidance and removals projects. 

Finally, what’s next for Chloris Geospatial?

We are not resting on our laurels! At the moment, we are continuing to develop our product to make it an even greater turnkey solution for REDD+ and ARR applications – both for developers and investors.

But, as a data company fully-focused on tracking natural capital performance over time, our attention isn’t limited to carbon. We see the measurement of biodiversity and water as viable, future opportunities for us and believe that such data would truly help communicate the value of nature conservation and restoration to businesses. Indeed, we see such measurements as essential if we are to build a net-zero and nature-positive economy.



Disclaimer: Respira International does not have any undisclosed affiliation with Chloris Geospatial, we are just interested admirers of their work and the way it aligns with ours. Find out more about Chloris Geospatial here.